Will carbon capture plants contaminate drinking water?

Biodegradation potential of nitramines in lake water.

Aina Charlotte Wennberg¹, Cathrine Brecke Gundersen¹, Alexander Eiler², Merete Grung¹, Malcolm Reid¹

- → Biodegradation potential of nitramines depends on their structure.
- → Bacteria from lake sediments are better degraders than from water alone.
- → Adaption of inoculum only improved biodegradation marginally.
- → Amine used for CO₂ capture will determine which nitramines are formed and thereby their persistence time in drinking water.

BACKGROUND

- Carcinogenic nitrosamines (NSAs) and potentially carcinogenic nitramines (NAs) can form in the atmosphere from amines escaping amine-based carbon capture plants (CCP).
- These are mobile substances that can end up in drinking water sources.
- A dynamic modelling tool is under development to guide the industry and regulators to ensure that the drinking water threshold limit (4ng/L) will not be exceeded.
- The major removal mechanism for NSAs is photodegradation, while biodegradation is the dominant removal mechanisms for NAs.
- Reliable biodegradation rates for NAs are needed to realistically simulate future levels in the water compartment.

EXPERIMENTAL DESIGN

Experiment 2 + 3

- •A modified OECD 309 simulation test.
- •3 different nitramines either separately or together at 100 µg/L.
- •Inoculum was either water alone, water and sediment, or water with suspended sediment from a lake used as drinking water source.
- •Fresh inoculum and adapted inoculum (5 mg/L for 2 months)
- •Primary degradation was measured in 4 replicate bottles by LC-MS/MS and compared to the abiotic control.

RESULTS

- Biodegradation rates varied for the different compounds.
- •MEA faster degradation than AMP, NIPZ had limited or no biodegradation within 60 days.
- •Adding sediment to the surface water increased biodegradation rates.
- •MEA had rapid degradation in abiotic control with sediments.
- Adaption of inoculum improved biodegradation rates.

Table 1: Primary biodegradation rates of nitramines in three experiments. Results are presented as mean of four replicates. DT_{50} : time to reach 50% biodegradation. T_{lag} : time to reach 10% biodegradation. ND: not determined due to no degradation. Experiment 2 had two parallel inoculums (P1 and P2) with four replicates each. P1 for adapted inoculum P-enriched and P1 non-adapted inoculum was discontinued on day 28 due to technical failure.

			MEA		AMP		NIPZ	
			N-(2-Hydroxyethyl)nitramide		N-(1-Hydroxy-2-		1-Nitropiperazine	
b			ę.		methylpropan-2-yl)nitramide		NO ₂	
			HO N O		но			
÷			Н		NH-NO ₂			
			DT ₅₀	T_{lag}	DT ₅₀	T_{lag}	DT ₅₀	T_{lag}
		Water	34	18	77	47	ND (>77)	47
	Exp 1	Water + sediment	7	2	12	2	35	2
		Abiotic control	>47	18	ND (>77)	ND (>77)	ND (>77)	72
	Exp 2	Single compound	15	3	34	12	ND (>59)	59
		Combined exposure	15	7	40	14	ND (>59)	21
		Abiotic control	21	14	>59	17	ND (>59)	ND (>59)
		Adapted inoculum	p1: >14	p1: 6	p1: 34	p1: 17	p1: ND(>83)	p1: ND(>83)
			p2: 9	p2: 4	p2: 23	p2: 14	p2: ND(>83)	p2: ND(>83)
	Ехр 3	Adapted inoculum P-	p1: 8	p1: 2	p1: x	p1: 21	p1: x	p1: 10
		enriched	p2: 8	p2: 3	p2: 38	p2: 14	p2: ND(>83)	p2: ND(>83)
		Non-adapted	p1: >14	p1: 4	p1: x	p1: x	p1: x	p1: x
		inoculum	p2: 17	p2: 4	p2: 42	p2: 28	p2: ND(>83)	p2: ND(>83)

