## Probabilistic Risk Characterisation for Chemical Mixtures:



Norwegian Institute for Water Research

<u>Jannicke Moe</u>, Knut Erik Tollefsen, Sophie Mentzel, Sam Welch, Merete Grung, Elisabeth Rødland.

Email: jmo@niva.no

### Hierarchical Integration of Models for Similar and Different Mode of Action

#### HIGHLIGHTS

- Nature-based Solutions (NbS) for urban waste-water treatment (UWWT) have been tested with six technical pilots
- We developed a multi-level probabilistic model for mixture risk calculation
- The model integrates traditional CA and IA concepts in a seamless and traceable way

#### **BACKGROUND**

- EU project MULTISOURCE: Modular tools for integrating enhanced natural treatment solutions in urban water cycles [1]
- Technical pilots in six countries:
   BE, DE, FR, IT, NO, US
- Example: Pilot "FR" (Lyon, France) (Fig. 1)
- Challenge: assess reduction in environmental risk for both single substances and mixtures
- Aim of Task 2.2: explore alternative approaches to mixture risk characterisation with probabilistic modelling methodology

# Touche de jihraden Touche

Figure 1. Technical pilot "FR":

sludge in wetlands. Source: [1].

treatment of raw wastewater and

#### **DATA PROCESSING**

- Measured concentrations: in influent and effluent waters
- Data compliation and harmonisation: NIVA Risk Assessment database [2]
- Extrapolation to environmental conc.: country-specific dilution factors
- Risk Quotient (RQ) = concentration / [predicted no-effect concentration]
- Prioritisation: 12 substances selected by highest RQ
- Substances allocated to groups, preferably by Mode of Action
- Modelling methodology: Object-oriented Bayesian network (BN) [3]

#### PROBABILISTIC CHARACTERISATION OF MIXTURE RISK

- Definition of Risk: probability (P) of RQ > Threshold<sub>RQ</sub> (Fig. 2B) Three approaches to mixture risk:
- (1) Sum of RQ: based on Concentration Addition (CA) concept
- (2) Joint P of exceedance: based on Independent Action (IA) concept
- (3) Integrated approach (Fig. 2A):
  - Within groups: Sum of RQ (Fig. 2C)
  - Across groups: Joint P of any SumRQ > Threshold<sub>SumRO</sub> (Fig. 2D)

#### HIERARCHICAL RISK MODEL

Figure 2. Hierarchical mixture risk model: Object-oriented Bayesian network

(A) Conceptual diagram for the Integrated approach to mixture risk.



#### (B) Substance-level risk: Probability of (RQ > threshold<sub>RQ</sub>).





(C) Group-level risk: Probability of (SumRQ > threshold<sub>SumRQ</sub>).

 $SumRQ_{Antibiotic} = RQ_{Amoxi} + RQ_{Azith} + RQ_{DDAC}$ 

(D) Mixture-level risk: Joint probability of (SumRQ > threshold<sub>SumRQ</sub>) for ANY group.

#### 





#### **MODEL PREDICTIONS**

The BN model can efficiently calculate risk for, e.g. (Fig. 3):

- The three risk levels (Fig. 2B-D)
- The 3 mixture risk approaches:
   SumRQ, JointP and integrated
- Scenarios of chemical emission to treatment pilot: here based on range of observed concentrations (± 10%)

**Figure 3.** Mixture risk predictions for pilot "FR" with emission scenarios. Threshold<sub>SumRQ</sub> = 2.



#### CONCLUSIONS AND OUTLOOK

 $(1 - P(SumRQ_{Pharma}) > Threshold_{SumRO})$ 

Exploration of mixture risk predictions for MULTISOURCE pilots suggests:

- The SumRQ approach gives a stricter risk characterisation than JointP
- The integrated approach provides a compromise
- The grouping of substances enables more insights into mixture risk

Further work will address:

- Sensitivity of the model: to substance grouping, discretisation, priors, etc.
- Expansion of the model: more substances, more locations, etc.
- Diagnoistic use of the model: identify risk drivers and uncertainties
- Adaptation of the model to new projects, e.g. CEFIC-LRI ECO66 ENCORE (Poster 3.15.P-Th242)

#### REFERENCES

[1] MULTISOURCE pilot "FR": <a href="https://multisource.eu/raw-wastewater/">https://multisource.eu/raw-wastewater/</a>.

[2] NIVA Risk Assessment database; see <a href="https://www.niva.no/source-to-outcome-predictor">https://www.niva.no/source-to-outcome-predictor</a>.

[3] HUGIN EXPERT (Bayesian network software); <a href="www.hugin.com">www.hugin.com</a>.

[4] Moe SJ, Benestad RE & Landis WG 2022. Robust risk assessments require probabilistic approaches. *Integrated Environmental Assessment and Management* 18:1133–1134. DOI: 10.1002/ieam.4660.





This project has received funding from the European Union's Horizon H2020 innovation action programme under grant agreement 101003527.