

# Steven J. Brooks<sup>1</sup>, Tânia Gomes<sup>1</sup>, Ana Catarina Almeida<sup>1</sup>, Maria Christou<sup>1</sup>, Congying Zheng<sup>2</sup>, Sergey Shaposhnikov<sup>2</sup>, Daria G. Popa<sup>3</sup>, Florin Oancea<sup>3</sup>

1 Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; 2 NorgenoTech, Ullernchassern, 64/66 Oslo, Norway;



# An ecotoxicity assessment of the plant biostimulant strigolactone (SL-6)

### — Background

Strigolactone (SL-6) is a phytohormone and plant biostimulant developed to enhance crop yields and improve agricultural outputs on a commercial scale. Application of SL-6 in the field will inevitably lead to its run-off into streams, rivers and coastal marine waters. However, little is known of the toxic effects of SL-6 in the environment, including aquatic organisms, and this information is needed before its widespread application.

The study involves a risk assessment of the toxicity of SL-6 to aquatic organisms using a range of standardised bioassays representing different trophic groups and acute and chronic endpoints from both freshwater and marine environments. In addition, the genotoxicity of SL-6 was determined using the comet assay, using algal, oyster and zebra fish embryo cells.

#### — Methods

**OECD 201** Microalgal growth Raphidocelis subcapitatata

**OECD 202 Immobilisation** Daphnia sp.

**OECD 236** Danio rerio



Zebra fish embryo



Freshwater in vivo bioassays

ISO10253 Microalgal growth Skeletonema pseudocostatum

ISO 14699 Tisbe battagliai acute toxicity

**ASTM E724-89** Oyster embryo Crassostrea gigas

Fucus sp. germling growth















Genotoxicity assessment (comet assay)









## Results



Fig 1. Growth of Raphidocelis subcapitata (freshwater) and Skeletonema pseudocostatum (marine) microalgae following 72 h exposure to increasing concentrations of SL-6.



Fig 2. Malformation rate in zebrafish larvae exposed to SL-6 for 96h, recorded at 24-, 48-, 72- and 96-hours post fertilization (hpf).



Fig 3. Survival in zebrafish larvae exposed to SL-6 for 96h, recorded at 24, 48, 72 and 96 hpf.



Concentration (mg/L) Fig 5. Percentage DNA strand breaks in the marine microalgae S. pseudocostatum, and embryo larvae of the oyster (C. gigas) and zebrafish (D.

rerio), after 72h, 24 h and 96h exposure to SL-6, respectively. CT- control, SC –

solvent control, \* statistically significant differences to CT (p < 0.05).

Table 1. Summary of SL-6 ecotoxicity tests for freshwater and marine species as well as genotoxicity (comet)

Fig 4. Zebrafish larvae exposed for 96h to a,b) Solvent control (0.1% DMSO), or c-g) 0.31

mg/L SL-6. Larvae exposed to SL-6 developed pericardial and yolk sac oedemas of

different severity and haemorrhage (d,f). Scale bars represent 0.5 mm.

| FW/SW        | Species               | Endpoint                     | NOEC<br>(mg/L) | LOEC<br>(mg/L) | LC/EC <sub>50</sub><br>(mg/L) |
|--------------|-----------------------|------------------------------|----------------|----------------|-------------------------------|
| Freshwater   | Microalgae (72h)      | Growth                       | 0.1            | 0.31           | n.d.                          |
|              | Daphnia acute (24h)   | Mortality                    | 1.0            | >1.0           | n.d.                          |
|              | Fish embryo (96h)     | Embryo malformation          | 0.1            | 0.31           | 0.35                          |
|              |                       | Survival                     | 0.33           | 1.0            | 0.78                          |
|              |                       | Hatching rate                | 0.1            | 0.33           | n.d.                          |
| Marine       | Microalgae (72h)      | Growth                       | 0.31           | 1.0            | 0.95                          |
|              | Fucus germling (14 d) | Growth                       | 1.0            | >1.0           | n.d.                          |
|              | Tisbe acute (48h)     | Mortality                    | 0.1            | >0.1           | n.d.                          |
|              | Oyster embryo (24 h)  | Embryo development           | 1.0            | > 1.0          | n.d.                          |
| Genotoxicity | Microalgae (72h)      | DNA damage (% strand breaks) | 0.001          | 0.0031         |                               |
|              | Oyster embryo (48h)   |                              | 0.01           | 0.031          |                               |
|              | Zebrafish (96 h)      | DICANS                       | 0.001          | 0.0031         |                               |

#### Risk Assessment

Predicted Environmental concentration (PEC)  $\frac{37}{5}$  = Risk Quotient (RQ) Predicted No Effect Concentration (PNEC)

Table 2. Summary of the risk assessment of SL-6 based on the lowest NOEC from both the ecotoxicity and the genotoxicity tests. Assessment factor (AF) taken from the European Union Technical guidance document on risk assessment (ECB, 2003).

|              | NOEC (mg/L) | Assessment factor (AF) | Calculated PNEC (μg/L) |
|--------------|-------------|------------------------|------------------------|
| Ecotoxicity  | 0.1         | 100                    | 1.0                    |
| Genotoxicity | 0.001       | 100                    | 0.01                   |

#### **Conclusions**

- Exposure to 0.31 mg/L SL-6 caused pericardial and yolk sac oedemas in zebrafish larvae.
- The lowest NOEC of 0.1 mg/L SL-6 was observed in FW microalgae and zebrafish (embryo malformations and hatching success).
- Genotoxicity was observed at 100 fold lower SL-6 concentrations, with a NOEC of 0.001 mg/L for both the microalgae (S. pseudocostatum) and zebrafish (D. rerio) larvae.
- A PNEC of 1.0 μg/L SL-6, was calculated with the lowest NOEC from the ecotoxicity tests. A PNEC of 0.01 μg/L SL-6 was calculated for genotoxicity with the lowest NOEC from the
- comet assay.











