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• Climate change (CC) may affect the fate, transport and distribution of pesticides 
in aquatic environment in the Mediterranean (Noyes et al. 2009). 

• Probabilistic approaches such as Bayesian networks (BN) are recommended for 
risk assessment to account for uncertainty in pesticide exposure under future 
scenarios (Carriger & Newman 2012; Mentzel et al. 2022a). 

• The goal of this study was to develop a BN model for transparent prediction of 
effects on aquatic biological endpoints, as well as to endpoint groups and to the 
community level (Mentzel et al. 2022b).

• Case study area: “Albufera national park” near Valencia (Spain)

• We developed the Bayesian network (BN) as a meta-model using outputs from
two prediction models (Fig.1):  

• RICEWQ - simulates chemical mass balance and aquatic exposure in rice 
paddies (Karpouzas & Capri 2006)

• PERPEST – predicts the probability of pesticide effects to various endpoints 
using a database of micro/mesocosm studies (Van den Brink et al. 2002)

• Scenarios: 

• Pesticide dosage applied: baseline & baseline+50%

• Climate projections affecting pesticide exposure: for years 2008, 2050, 2100 

• Three different pesticide types commonly used in the study area: 
fungicide (azoxystrobin), herbicide (MCPA), & insecticide (acetamiprid).

• RICEWQ was run for all 552 spatial units and 6 scenarios to derive probability 
distributions of pesticide exposure concentration

• The joint probability of effect to endpoint groups (cumulative risk) were 
calculated by “OR” expressions in the BN
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• We developed a probabilistic approach to risk characterization for 

pesticides, incorporating spatial variability in exposure. 

• A Bayesian network (BN) was used as a meta-model 

to link scenarios, a process-based exposure model and 

a probabilistic effect model.

• The BN was also used to calculate the joint probability of effects 

from individual biological endpoints to endpoint groups and to 

community level.

Figure 3 Examples of the predicted effect on the endpoint groups invertebrates and plants 
for the three selected pesticides (azoxystrobin, acetamiprid and MCPA), 

for climate conditions in 2050 and two pesticide application scenarios (baseline and baseline+50)

Figure 2 Example of the parameterized BN for the fungicide azoxystrobin: probability of effect on the taxonomic 
and functional groups, for climate conditions in 2050 and pesticide application scenario “baseline+50%”.

• Future research efforts can incorporate more realistic scenarios, e.g., 
crop types, pesticide application patterns, and an ensemble of climate models.

• To advance from single-compound assessments, we aim to carry out a risk 
assessment of the intentional mixtures applied in the Albufera national park.

A parameterized BN example for the fungicide azoxystrobin (Fig. 2) shows:

• For individual endpoints, the predicted probability of clear effect ranges 0 - 63%

• The highest probability of clear effect (63%) is for microcrustaceans

The aggregated results for endpoint groups (invertebrates, plants  Fig. 3) shows:

• The probability of any individual plant endpoint being affected was highest for 
the herbicide (MCPA, 60%) and lowest for the insecticide (2%). 

• Invertebrates, however, had higher probability of being affected by the fungicide 
(azoxystrobin) than by the insecticide (acetamiprid). 

Considering the cumulative risk to the community level (Fig. 3); 

• Azoxystrobin has the highest probability (98%) affecting any of the individual 
endpoints in the aquatic community, and acetamiprid had the lowest (75%). 

• The type of pesticide had more influence on the probability of community-level 
effects than the pesticide dosage level.

For more information on RICEWQ exposure prediction using BNs: see 2.08.P-Mo130
For more information on use of PERPEST effect model: see 3.04.P-Mo160 
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Figure 1 Conceptual model version the Bayesian network with three main modules: 
Scenario and exposure, Effects on biological endpoints and Cumulative risk to the aquatic community.
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