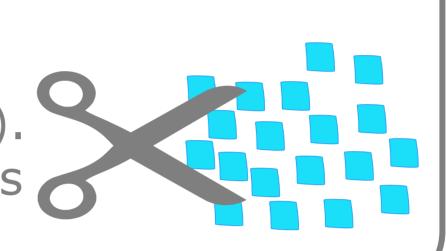


Gilberto Binda¹, Rachel Hurley¹, Luca Nizzetto^{1,2}

1 Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo (Norway) 2 RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)

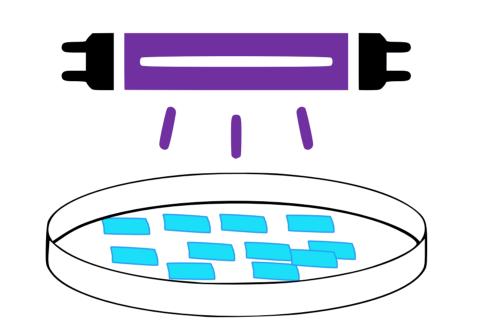
Untangling Environmental Ageing Processes of (Micro) Plastic Toward the Creation of Realistic Reference

Materials

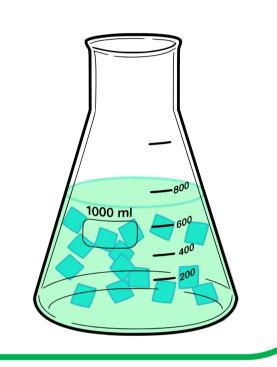

Introduction and aims

- Simulation of different ageing processes can increase environmental relevance of plastic reference materials.
- Several factors affect the environmental ageing of plastics.
- Understanding the effects of different ageing processes provides knowledge and guidance for future studies.

Analyzed factors and processes

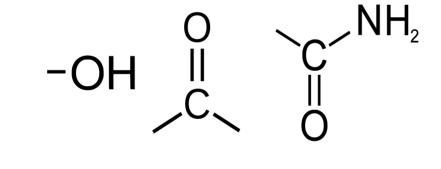

Polymer specimens

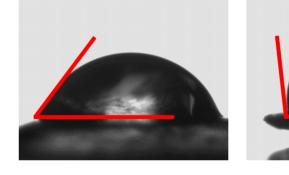
- "Confetti-like"(5 x 5 mm) fragments cut from plastic objects.
- Polyethylene (PE) from agricultural mulching films (ca. 0.05 mm thick).
- Polypropylene (PP) and polylactic acid (PLA) from single-use containers (ca. 0.3 mm thick).

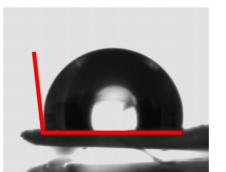

Chemical ageing

- 900 h of ultraviolet (UV) irradiation in ageing chamber.
- UV-B radiation at 5 W/m².
- Performed in air.

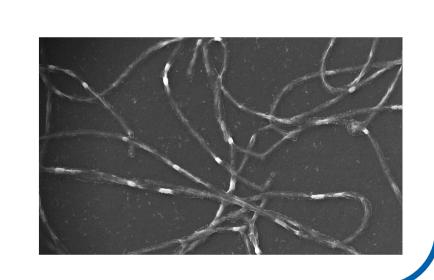
Biological ageing


- Simple freshwater algal community (3 species).
- 10 days of incubation.
- Performed on pristine and previously UV aged polymers.


Characterization


Functional groups

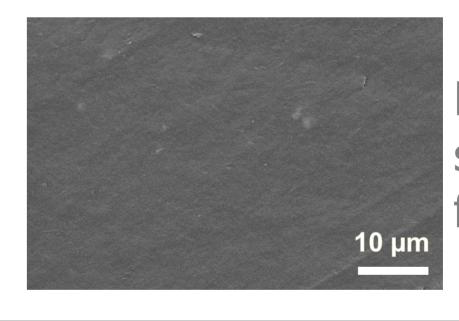
Fourier-transformed infrared spectroscopy



Hydrophobicity Water contact angle

Morphology Scanning electron microscopy

Summary of results


Functional groups

PE and PP Dominance of alkyl

groups PLA Dominance of carbonyl groups

Hydrophobicity

PE and PP Hydrophobic $(contact angle = 100^{\circ})$ PLA hydrophilic $(contact angle = 80^{\circ})$

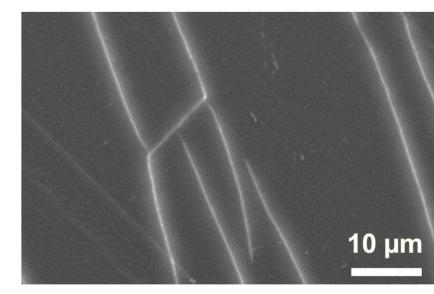
Morphology

Regular shapes and flat surfaces

UV Aged polymers

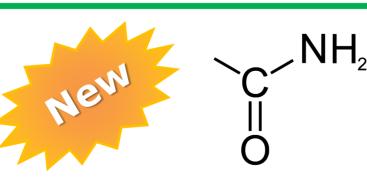
Pristine

polymers



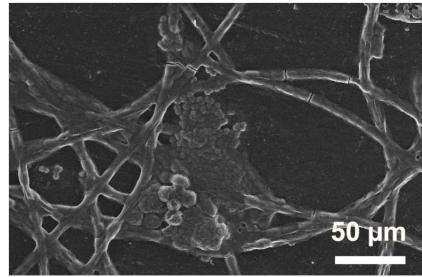
PE and PP Increase in carbonyls and hydroxyls

PLA Less marked increase


PE and PP Become hydrophilic (contact angle $= 80^{\circ}$) PLA Slightly decrease (contact angle $= 75^{\circ}$)

Formation of cracks and surface 10 µm rugosity

Biofouled polymers



polymers Increase hydroxyls and new groups (amides and polysaccharides)

All polymers Become hydrophilic further $(contact angle = 60^{\circ})$

Re-shaped by biofilm community

Conclusions and outlooks

- Polymer type importantly affects the response to chemical ageing, while biofouling changes the properties of every polymer.
- UV ageing alters plastic properties but may have limited environmental relevance if used alone.
- Biofouling process re-shapes the initial surface properties of plastic and need further investigation for the potential environmental consequences (e.g., further degradation or "protection" from the surrounding environment).

Contacts

gilberto.binda@niva.no @GilbertoBinda

@eu_planet

Meet me at the poster corner! Today at 18:00 Level 2 Foyer

Get a copy of this poster!

Acknowledgements

This work is financed under the EU H2020-MSCA-IF scheme, project "PLANET - understanding PLAstic pollutioN effects on the biogeochemical cycle of ElemenTs" (grant

