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• Novel probabilistic approach to assess the environmental risk of pesticides under future 
scenarios

• Bayesian Network integrating different types of information  and quantifies uncertainty 
under various scenarios and for all components of the model

• Exposure prediction model settings can incorporate:
• different crop and soil types, 
• various other pesticides, 
• more application scenarios, and 
• a selection of climate models. 

• In Norway, climate change (CC) is expected to result in an increase in temperature and 
precipitation.

• Expected CC effects can cause an increase in occurrence of fungal, plant disease, and insect 
pests.

• Adaptation to CC may lead to changes in agricultural practices (Hanssen-Bauer et al., 2015).
• Typical risk assessment lacks consideration of variability and uncertainty to hazardous 

pesticides and other factors influencing the exposure to or effects of them (Belanger & Carr, 
2020).

Our main study goals were:
• To develop a probabilistic model - Bayesian network (BN) - that characterize  environmental 

risk of pesticides under future CC scenarios,
• To include direct and indirect effects of CC scenarios (such as meteorological conditions and 

pesticide application),
• To quantify uncertainty and incorporate it in the probabilistic risk characterization.

The exposure concentration was predicted with the World Integrated System for Pesticide 
Exposure (WISPE) platform (Bolli et al., 2013):
• It can be run with several realistic crop, climate, pesticide application and soil scenarios (e.g. 

predicted meteorological data for 2000-2100 - A1B emission scenario), and for a 
representative field side). 

• Three application scenarios are used: baseline (current practice), baseline-50% (Green deal), 
and baseline+50% (Worst-case practice). 

• The platform was run for five pesticides: MCPA, fluroxypyr-meptyl and clopyralid 
(herbicides), trifloxystrobin and prothioconazole (fungicides).

BNs can act as a meta-model that integrates different types of information, from e.g. climate 
projections, pesticide exposure models (e.g. process-based exposure model) and toxicity 
testing (Mentzel et al., 2021). 

The proposed BN model consists of four modules (Fig. 1): 
1. Scenario module: contains a scenario node that is defined by climate and application.
2. Exposure module: the scenarios determine the instantaneous concentration and its 

probability distribution (Fig. 2). 
3. Effect module: its effect distribution is based on either no effect concentration (NOEC) or 

half maximal effective concentration (EC50) distribution – log-normal distribution, similar to 
a species sensitivity distribution but not used to derive a predicted no effect concentration.

4. Risk characterization module: composed of exposure: effect ratio node that together with 
an appropriate precautionary factor predicts the probabilities of the risk quotient (RQ) 
intervals. Typically, risk is assumed if RQ > 1 (Mentzel et al., 2021). 

Figure 3 Example of 
fluroxypyr-meptyl
risk quotient 
distribution over 
time for 1, 2, 5, 22, 
and 61 days after 
application, for the 
baseline application, 
climate model C1 
and the time interval 
of 2070-2100 with a  
NOEC based effect 
distribution.

Two examples are displayed for the risk quotient node output of the developed BN. 
RQ distribution over time (see Fig.3): 
• RQ is most likely in lower intervals.
• At Day 1, the highest probability is predicted for the RQ to be above 1.
• Already at Day 5, the RQ is below 1 with a likelihood of a 100%.
RQ distribution for expected scenarios (see Fig. 4): 
• For current application practice with current climate, the RQ is predicted to be below 1 at 99%.
• In future:
• RQ distribution with the same application scenario stays the same,
• There is a slight shift towards lower RQ intervals for the baseline-50% scenario, and
• The probability for the RQ to be above 1 is highest with the baseline+50% application 

scenario.

• Probabilistic risk assessment approaches need to account for variability and uncertainty in CC.
• Updated RCP emission scenarios and bias corrected climate projections are needed for more 

realistic predictions. 
• BNs are a promising method for predicting risk of complex environmental conditions and 

accounting for uncertainty in prediction

Hanssen-Bauer et al., 2015. https://www.miljodirektoratet.no/publikasjoner/2015/september-
2015/klima-i-norge-2100/ 
Belanger & Carr, 2020. https://doi.org/10.1016/j.ecoenv.2020.110684
Mentzel et al., 2021. https://doi.org/10.1002/ieam.4533 
Bolli et al., 2013. http://hdl.handle.net/11250/2445610 

Figure 4 Example risk 
quotient distribution  
for fluroxypyr-meptyl
derived with current 
and future 
application 
scenarios, for one 
day since application,  
with a EC50 based 
effect distribution.

Figure 1 Example 
of the  BN 
parameterized for 
fluroxypyr-meptyl, 
with a 
baseline+50% 
application, global 
climate model C1, 
time period of 
2035-2056, for a 
time since 
application of 1 
day and a EC50 
based effect 
distribution.

Figure 2 Example 
of the effect of 
precipitation on 
the pesticide 
exposure 
concentration 
under the three 
application 
scenarios 
according to the 
WISPE platform 
outputs.


