1 Norwegian Institute for Water Research, (NIVA), Økernveien 94, N-0579 OSLO, Norway Aina.charlotte.Wennberg@niva.no

Can Bacterial Growth be used as an Indicator for Biodegradation of Chemicals in a High Throughput Screening Test for Readily Biodegradability?

Background -

- > High throughput method universal for down the drain substances > Increase understanding of microbial dynamics
- > Screening for **indication** for readily biodegradable
- > Representative and reproducible inoculum

- > Relevant reference compounds
- > Activate biodegradation potential of microbial community

H ₃ C N _N H ₂	Benzotriazole Trimethoprim Oxipurinol Acesulfam	DOC 5 [mg/L]	DOC 25 [mg/L]	DOC 125 [mg/L]	
NH NH NH	Sucralose				

Inoculum source	Non-Treated	Co-substrate	Pre-cultured
Daphnia culture water			
Frozen activated sludge	Undiluted, 10x and 100x diluted	5mg/L yeast extract. Inoculum 10x and 100x diluted	7 days with 100 mg/L yeast extract. Inoculum 10x and 100x diluted
Urban river			
Seawater			

Results and discussion

Daphnia magna culture water

Frozen activated sludge

Inoculums

Seawater

- © Not exposed to chemicals
- © Readily available in ecotox laboratories
- © Adapted to laboratory conditions
- Environmental relevance?
- Limited diversity?

- "Standardized inoculum"
- © Reproducible for comparing chemicals
- © Relevant for WWTP
- © Lost some activity during storing.
- © Filamentous bacteria not suitable for FCM counts.
- © Sewage and traffic run off pollution -> likely biodegraders

Urban river

- © Representative and environmental relevant
- Not reproducible because of changing conditions?
- Season and temperature variation
- (3) Ice cover when sampled

Much sewage is released untreated to Norwegian fjords

- © Representative and environmentally relevant
- © Variable microbial community
- © Temperature significantly colder than lab
- Seasonal variation

How important is the Quantity of bacteria in the inoculum?

Blank Controls of diluted samples had regrowth the first days and stabilized at the same or higher quantity than non-diluted samples

Protozoa that eat bacteria such as amoebae, ciliates and heterotrophic flagellates were observed

Can the Quality of the microbial inoculum be improved by either pre-culture for adaption to lab conditions or adding co-factors?

Pre-culturing or addition of yeast extract as co-factor had variable results.

Example seawater:

Pre-culture: faster growth from aniline, no growth from sodium benzoate (SB), higher probability of growth from 4-nitrophenol.

Co-substrate: increased growth of SB while no effect on aniline.

Future perspectives

- Biodegradation will be verified by chemical analysis
- Results will be compared with calculated Gibbs Energy Dynamic Yield

The role of protozoa will be studied further