Sophie Mentzel!, Claudia Martinez-Megias?, Andreu Rico?, Merete Grung!,
Knut Erik Tollefsen', and Jannicke Moe!

Norwegian Institute for Water Research 1 Norwegian Institute for Water Research
2 IMDEA Water Institute

Using a Bayesian network model to predict effects of pesticides on aquatic
community endpoints in a rice field — a southern European case study

» We propose a probabilistic approach to risk estimation incorporating » We use the Bayesian network as a meta-model that links the inputs and

temporal and spatial variability in risk estimation of pesticides using a outputs for a process-based exposure model (RICEWQ) and a
Bayesian Network probabilistic case-based effect model (PERPEST).
Background

Bayesian network input information
* Inthe Mediterranean, climate change (CC) may affect the fate, transport and distribution
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* Probabilistic approaches are recommended for risk assessment to account for distribution is derived and used
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as input for the exposure

uncertainty in pesticide exposure under future scenarios (Carriger & Newman, 2012; module of the BN

Mentzel et al., 2021)
 The goal of this study was to develop a model that offers a transparent way to estimate
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effects of pesticides on various aquatic taxonomic and functional (community) level. 0 , | , , | group a gradient was derived and |
L S used as input for the effect ; h oo
Log Concentration module of the BN. PreETTEER Y
Approach
We developed a Bayesian network (BN) as a meta-model using outputs from two prediction
models: Parameterized model for an insecticide
* RICE Water Quality (RICEWQ) model - simulates chemical mass balance and aquatic
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Results
, - . _ Aggregation of the effect on Aggregation of the effect on taxonomic to
The BN model can derive outputs for the effect on each of the pesticide specific taxonomic . functional erou
groups. The displayed example shows the effect on insects by acetamiprid (Fig. 4) : taxonomic group ) & P
. . e e . a
* It can be expected that insects are affected with a probability of 22 %, and slightty
. ofe . 1.00 A
affected with a probability of 18 % (Fig. 4a). 0.75- - -
. . . . . 0 . 0 a) b) 0.504 3
* The likelihood of an effect on insects is true with approx. 30% and false with approx. 70% 0251 o | @
. 0.00 -
(Fig. 4b). = 1
| | | 0 )
An assumption can also be made for the effect on functional groups (Fig. 5). We can 0.0 | G State ;
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Furthermore, the functional groups of the different pesticide types can be compared (Fig. 6): “Seenario
* |t can be observed that the likelihood for there to be an affect on the plant community is Figure 4 Example of the predicted effect on insects by
o ] o acetamiprid for a specific scenario (a) and summarizing Fi 1 e of th dicted effect of the i ticid
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’ hlghESt for MCPA with approx. 60%. of the pesticide can be assumed (b), for climate functional group “Invertebrates” (b), for climate conditions

condition in 2050 and a baseline+50% application.

* Invertebrates have highest probability to be affected by azoxystrobin and lowest by in 2050 and baseline+50% application.

acetamiprid (under climate conditions for 2008).
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Figure 6 Examples of the predicted effect on the functional groups invertebrates and plants
for the three selected pesticide (azoxystrobin, acetamiprid and MCPA), for climate
conditions in 2008 and 2050 and a baseline+50 application
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