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• In the Mediterranean, climate change (CC) may affect the fate, transport and distribution 
of pesticides in aquatic environment (Noyes et al., 2009)

• Probabilistic approaches are recommended for risk assessment to account for 
uncertainty in pesticide exposure under future scenarios (Carriger & Newman, 2012; 
Mentzel et al., 2021)

• The goal of this study was to develop a model that offers a transparent way to estimate 
effects of pesticides on various aquatic taxonomic and functional (community) level.

We developed a Bayesian network (BN) as a meta-model using outputs from two prediction 
models:  

• RICE Water Quality (RICEWQ) model - simulates chemical mass balance and aquatic 
exposure in rice paddies (Waterbourne Envirnomental Inc, 2011; Karpouzas & Capri, 
2006), and 

• Predicts the Ecological Risks of PESTicides (PERPEST) model - simulates pesticide effect 
to various taxonomic groups using an existing database for micro and mesocosm studies 
(Van den Brink et al., 2002)

Concept model:

• RICEWQ was run for all scenarios (climate condition - 2008, 2050, & 2100, and dosage 
applied - baseline & baseline+50%), for each a exposure concentration distribution was 
derived (Fig. 1). 

• The effect concentration and prior probabilities for each of the taxonomic groups was 
determined by the PERPEST model (Fig. 2 & Fig. 3).

• BNs are constructed for three different pesticide types commonly used in the study area 
“Albufera national park” near Valencia (Spain): azoxystrobin (fungicide), MCPA 
(herbicide), & acetamiprid (insecticide) (Fig. 3).
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The BN model can derive outputs for the effect on each of the pesticide specific taxonomic 
groups. The displayed example shows the effect on insects by acetamiprid (Fig. 4) :
• It can be expected that insects are affected with a probability of 22 %, and slightly 

affected with a probability of 18 % (Fig. 4a).
• The likelihood of an effect on insects is true with approx. 30% and false with approx. 70% 

(Fig. 4b).

An assumption can also be made for the effect on functional groups (Fig. 5). We can 
compare the effect of acetamiprid on the different taxonomic groups (Fig. 5a):

• Macroinvertebrate are predicted not to be affected with a likelihood of almost 100 %. 
• Insects, macro-and microcrustaceans, have higher probability to be affected with a 

likelihood of 25-30% .
• The probability for there being an affect on any of the taxonomic groups of  the functional 

group of invertebrates is false with approx. 25 % and true with approx. 75%.

Furthermore, the functional groups of the different pesticide types can be compared (Fig. 6):
• It can be observed that the likelihood for there to be an affect on the plant community is 

lowest for acetamiprid with approx. 98%, and
• highest for MCPA with approx. 60%.
• Invertebrates have highest probability to be affected by azoxystrobin and lowest by 

acetamiprid (under climate conditions for 2008).

Figure 1 Example RICEWQ model 
output, for each scenario a 
distribution is derived and used 
as input for the exposure 
module of the BN.

Figure 2 Example PERPEST model 
output,  for each taxonomic 
group a gradient was derived and 
used as input for the effect 
module of the BN.

➢ We propose a probabilistic approach to risk estimation incorporating 

temporal and spatial variability in risk estimation of pesticides using a 

Bayesian Network

➢ We use the Bayesian network as a meta-model that links the inputs and 

outputs for a process-based exposure model  (RICEWQ) and a 

probabilistic case-based effect model (PERPEST). 

Figure 6 Examples of the predicted effect on the functional groups invertebrates and plants 
for the three selected pesticide (azoxystrobin, acetamiprid and MCPA), for climate 
conditions in 2008 and 2050  and a baseline+50 application 

Figure 4 Example of the predicted effect on insects by 
acetamiprid for a specific scenario (a) and summarizing 
boolean node output displaying whether or not an affect 
of the pesticide can be assumed (b), for climate 
condition in 2050 and a baseline+50% application. 

Figure 5 Example of the predicted effect of the insecticide 
on the taxonomic groups (a), that are considered in the 
functional group “Invertebrates” (b), for climate conditions 
in 2050 and baseline+50% application.
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Figure 3  Example of the parameterized BN 
for the insecticide acetamiprid. It displays 
the predicted effect on the taxonomic and 
functional group, for climate conditions in 
2050 and a baseline+50% application 
scenario.

• Future efforts will aim to incorporate more scenarios such as other crop types, application
patterns and climate projections to derive a more realistic pesticide risk assessment.

• We aim to carry out an effect assessment of the intentional mixtures to address
cumulative risk of complex environmental mixtures.
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