

Plastic content and additive distribution in a wastewater treatment plant effluent in Norway

¹Norwegian Institute for Water Research (NIVA), Oslo, Norway

Introduction

- Wastewater treatment plant (WWTP) effluent as a relevant source of microplastic to water
- Additives loaded to plastic during production (plasticisers, flame retardants, UV filters, dyes...) with concentrations in the % range
- Distribution of plastic additives in WWTP effluents in unknown
- Modelling (Allan et al., 2022) and measurements to understand the distribution of additives in WWTP effluents

AIMS OF THIS STUDY

- Sample a large enough sample of suspended particulate matter (SPM) from the WWTP effluent at VEAS in Oslo
- Measure the plastic content of the effluent SPM by pyro-GC/MS
- Determine the distribution or speciation of selected additives in WWTP effluent

Methodology

- Sample effluent SPM to perform different extractions in the laboratory
 → Use of continuous-flow centrifugation (CFC)
 - → Sampling done in December 2020; 3 consecutive weeks; collection of ~8 g dw of SPM each week

- Extraction of selected additives from the SPM sample:
 - → Exhaustive extraction using Soxhlet extractor
 - → Accessible concentration using silicone rubber (SR) extractions (C_{Access})
 - \rightarrow Passive sampling with SR in the effluent to determine freely dissolved concentrations (C_{free})

REFERENCES

Allan, I. J., Samanipour, S., Manoli, K., Gigault, J., & Fatta-Kassinos, D. (2022). Examining the Relevance of the Microplastic-Associated Additive Fraction in Environmental Compartments. ACS ES&T Water, 2(3), 405-413.

Results

PLASTIC CONTENT OF SUSPENDED MATTER FROM THE EFFLUENT

• Presence of PVC, PE, PP mainly; 3-4 mg g⁻¹ SPM

	PVC	PE	PP	PS
December 2020*				
KOH treatment	1.74 (10)	1.7 (120)	0.13 (22	0.031 (20)
H2O2 treatment	0.51 (92)	3.85 (120)	0.05 (170)	0.027 (83)
*Composite sample from 3 weeks CFC sampling				
Note: in bracket %RSD of three measurements				

SPECIATION OF TWO UV FILTERS (UV-328 and UV-329)

	Effluent suspended	matter	
		UV329	UV328
-	C _{SPM} (ng g ⁻¹)	61 (5)	96 (3)
	Coc (ng g ⁻¹)	164 (5)	259 (3)
	OC content = 37.1 (12) % dw	
	Cspm = 3-20 mg L ⁻¹		

Partition or distribution coefficients		
	UV329	UV328
logK _{OC} (L kg ⁻¹)	6.20	7.30
logK _{OW} (L <u>kg⁻¹</u>)*	7.3	7.4
logK _{sr-w} (L kg ⁻¹)**	6.3	6.9
*Pubchem; **Unpublished		

• With 3-4 mg plastic g⁻¹ SPM and assuming K_{ow} is an acceptable proxy for partitioning to plastic, at equilibrium, 9 ng of UV329 and 0.8 ng of UV328 would sorb to the plastic in 1 g of SPM

ACCESSIBLE CONCENTRATION

Accessible fractions (24h and 8 g SR) of 67 and 8.4 % for UV329 and 328.

SR extraction to quantify C _{Access}		Fraction accessible (%)			
	UV329	UV328		UV329	UV328
C _{Access} (ng g ⁻¹)*	13 (6)	1.8 (16)	5h, 4 g SR	21 %	1.9 %
C _{Access} (ng g ⁻¹)**	41 (4)	8.1 (14)	24h, 8 g SR	67 %	8.4 %
*5h and 4 g SR; 24	4h and 8 g	SR			

Comparison with another non-additive		
chemical: Hexachlorobenzene		
Total concentration (ng g ⁻¹)	0.53	
C _{free} (ng L ⁻¹)	0.014	
logK _{oc} (L kg ⁻¹)	5.02	
C _{Access} (ng g ⁻¹); 5h, 4 g	0.32	
C _{Access} (ng g ⁻¹); 24h, 8 g	0.37	

% Accessible
61 %
70 %

Conclusions

- Realistic apparent logK_{oc} values
- Low UV filter amounts to be expected to sorb to the plastic content
- C_{Access} for UV329 ~ C_{Access} for hexachlorobenzene, not used as plastic additive
- Lower accessibility of UV328:
 - Presence as plastic additive?
 - Artefact of the extraction protocol?

ACKNOWLEDGEMENTS

We would like to thank the Water Joint Programme Initiative (Water JPI) and IC4WATER for funding the "NANO-CARRIERS" project entitled Micro and Nanoplastics as CARRIERS for the spread of chemicals and antibiotic resistance in the aquatic environment (Norwegian research council grant no 297334).